基本內(nèi)容
[determinant] 若干數(shù)字組成的一個方陣,它的值是按下述方式可能求得的所有不同的積的代數(shù)和,求每一個積時依次從每一行取一個元因子,而這每一個元因子又需取自不同的列,作為乘數(shù),積的符號是正是負(fù)決定于要使各個乘數(shù)的列的指標(biāo)順序恢復(fù)到自然順序所需的換位次數(shù)是偶數(shù)還是奇數(shù) 行列式在數(shù)學(xué)中,是由解線性方程組產(chǎn)生的一種算式。行列式的特性可以被概括為一個多次交替線性形式,這個本質(zhì)使得行列式在歐幾里德空間中可以成為描述“體積”的函數(shù)。其定義域為nxn的矩陣A,取值為一個標(biāo)量,寫作det(A)或 | A | 。行列式可以看做是有向面積或體積的概念在一般的歐幾里得空間中的推廣。或者說,在n維歐幾里得空間中,行列式描述的是一個線性變換對“體積”所造成的影響。無論是在線性代數(shù)、多項式理論,還是在微積分學(xué)中(比如說換元積分法中),行列式作為基本的數(shù)學(xué)工具,都有著重要的應(yīng)用。 行列式概念最早出現(xiàn)在解線性方程組的過程中。十七世紀(jì)晚期…
[查看更多]